## EXTRUDED PLASTIC SCINTILLATOR

Anna Pla-Dalmau Fermilab

International Scoping Study – Detector Session September 23, 2005



### **THE EARLY WORK: 1995-1998**

#### DISADVANTAGE FOR LARGE DETECTORS

- Expensive: price of <u>cast</u> scintillator ~ \$40/kg
  - MINOS uses 300,000 kg of scintillator!

## → OBJECTIVE: USE LOW COST SCINTILLATOR

→ APPROACH:

NEW TECHNIQUE → EXTRUSION

### CAST SCINTILLATORS: PLATES, TILES, FIBERS

- Purification of styrene monomer
  - Removal of inhibitor
  - Vacuum distillation
- Addition of dopants
- Thermal polymerization
  - No initiators
  - Freeze-pump-thaw cycle
  - Temperature cycle to control average molecular weight



#### **ADVANTAGES:**

- Use commercial polystyrene (PS) pellets
  - No monomer purification problems
- Processing flexibility
  - Manufacture of essentially any shape

#### **DISADVANTAGES:**

- Poorer optical quality
  - Particulate matter in PS pellets
  - Additives in PS pellets

#### **SOLUTION:**

Use a WLS fiber





### MANUFACTURING TECHNIQUES: D0 – PRESHOWER DETECTORS



### **EXTRUDED SCINTILLATOR COMPOSITION**

### Polystyrene: Dow Styron 663 W

1% PPO + 0.03% POPOP





## MANUFACTURING TECHNIQUES: MINOS, STAR, K2K... 1999 – STILL USED





# EXTRUSION AT ITASCA PLASTICS: PURGING STAGE, BATCH PRODUCTION





# EXTRUSION AT ITASCA PLASTICS: PURGING STAGE, BATCH PRODUCTION





## WORK IN PARALLEL SINCE 1999: IN-LINE EXTRUSION















- •Line under nitrogen atmosphere:
  - Drying under nitrogen
  - Each piece of equipment is purged

- •Less handling of raw materials
- Precise metering of feeders
- Twin-screw extruder (better mixing)
- Melt pump offers steady output
- Control instrumentation



## FNAL-NICADD EXTRUSION FACILITY: CO-EXTRUDER – OCTOBER 2005









## FNAL/NICADD EXTRUSION FACILITY: DIE FOR MINERVA – 2005



### **EXTRUDED SCINTILLATOR: COSTS**

- MINOS (~300 tons): about \$10 / kg
- Recent projects (0.3 ton): about \$25 / kg
- Estimated projection for large quantities: \$6 7 / kg
- Early extrusion efforts showed the cost at roughly:
  - 50% materials, 50% processing
- ADVANTAGE of in-line method:
  - Higher extrusion rate 75 –100 kg / h, lower processing costs
  - More consistent scintillator, less QC efforts, lower processing costs
- ADVANTAGE of high volume production:
  - Lower price for raw materials



## EXTRUDED PLASTIC SCINTILLATOR: NEAR FUTURE

- A lot of progress has been made.
- Extrusion efforts:
  - FNAL/NICADD Facility
  - Triumf Canada (R&D for KOPIO)
  - Kyungpook National University Korea (R&D Linear Collider)
  - Inquiries from University of Udine Italy (R&D Linear Collider)

### Improvements:

- Prepare in-line QC of scintillator
- Study and test new dies designed with Computational Fluid Dynamics simulations
- Coating reflectivity